
Development of a Horticultural Soil Management Information System
SMIS Technical Documentation Report

1

SMIS TECHNICAL
DOCUMENTATION REPORT

V1.0

Development of a Horticultural Soil Management Information System
SMIS Technical Documentation Report

2

TABLE OF CONTENTS

Revision History .. 3

Abbreviations .. 3

1. Introduction .. 4

1.1. Purpose ... 4

1.2. Scope ... 4

2. System Design ... 5

2.1. Overview ... 5

3. Front-end – SMIS AT ... 6

3.1. Overview ... 6

3.2. Services ... 7

3.3. User Interface modules and components... 8

4. Back-end – SMIS API ... 9

4.1. Overview ... 9

4.2. REST API and routing ... 10

4.3. MongoDB Database .. 11

4.4. Memoisation / Caching ... 11

4.5. Analytics .. 12

5. Deployment... 13

5.1. Overview ... 13

6. Manual .. 13

6.1. Configuration files ... 13

Development of a Horticultural Soil Management Information System
SMIS Technical Documentation Report

3

REVISION HISTORY

Version Description Date Author

1.0 Original version of the technical documentation

report.

01/09/2018 Tomasz Kurowski

ABBREVIATIONS
API Application Programming Interface

HTML Hypertext Markup Language

ES2016 ECMAScript 2016

HTTP Hypertext Transfer Protocol

JSON JavaScript Object Notation

ODM Object Data Modelling

NoSQL Non-SQL / Non-Relational

REST Representational State Transfer

SCSS Sassy Cascading Style Sheet

SMIS Soil Management Information System

SMIS AT SMIS Analytics Toolkit

URI Uniform Resource Identifier

VM Virtual Machine

Development of a Horticultural Soil Management Information System
SMIS Technical Documentation Report

4

1. INTRODUCTION

1.1. PURPOSE

The following document describes the functionality and architecture of the software delivered as part

of the Soil Management Information System (SMIS) project. Its purpose is to provide a summary of

the overall system design, its intended means of deployment, descriptions of each of the system’s

major components alongside their individual architectures and dependencies, and an overview of how

these components interface and interact with each other to provide the SMIS functionalities. Details

on the means of system administration, configuration, and deployment are also included.

The document is intended to provide an accurate overview of the software as delivered and serves as

a potential introductory document for an administrator or developer seeking to modify, expand, or

re-configure SMIS software either at the front-end or at the back-end. Topics dealing with

configuration and deployment are covered in separate sections to provide an effective manual for

administrators/developers seeking to make simple changes within the scope of already implemented

options without modifying the SMIS system software, which would require a deeper understanding

of the design.

1.2. SCOPE

This document covers the software design of the individual components of the SMIS system and their

interactions from a technical point of view, including a discussion of the technologies used (and the

resulting requirements), the code organisation and implemented interfaces.

Overviews of the modules and classes that make up the software are included, but individual

functions, methods, properties or other variables are outside of the scope of this document. Those

lower-level elements of the implementation, of interest primarily to developers seeking to modify or

expand the software, are documented via code comments including standardised tags which allow for

automated generation of interactive, up-to-date, HTML-based documentation including hyperlinks, a

form of documentation more conducive for software development. Scripts used for generating and

viewing this documentation are an integral part of the SMIS software system to be delivered alongside

it.Topics addressed in previous documents, in particular the Database Technical Documentation,

which covered the SMIS database design and generation process, and the SMIS Web Interface Report,

which covered the visual side of the interface views provided by the SMIS Analytics Toolkit, are

covered with the focus limited to their interactions with other components and implementation

details omitted from the previous documents.

Development of a Horticultural Soil Management Information System
SMIS Technical Documentation Report

5

2. SYSTEM DESIGN

2.1. OVERVIEW

The SMIS software is split into two major parts, which during the course of the SMIS development

project were maintained as two ostensibly independent applications with separate development

cycles and version control repositories. The applications are internally referred to as SMIS AT (i.e. the

SMIS Analytics Toolkit in a narrow sense) for the front-end, client-side application and visualisation of

SMIS functionalities and SMIS API (i.e. the SMIS Application Programming Interface) for the back-end,

server-side application which provides access to the database and analytics tools. The two applications

communicate through a Representational State Transfer application programming interface (REST

API) exposed by SMIS API.

This approach was chosen to facilitate a clear separation between the front-end and back-end

components of SMIS with a well-defined, reusable interface between the two. During development,

the SMIS AT and SMIS API applications could be deployed and tested independently, which simplified

debugging and allowed for exploratory work using the SMIS database and back-end coupled with pre-

existing tools (such as R machine learning and plotting libraries) before the front-end was sufficiently

mature to provide the necessary visualisation of results and manipulation of system functionalities.

The back-end remaining functionally independent and available through a commonly used

Representational State Transfer (REST) interface also allows for the possibility of permitting access to

the SMIS database to applications, scripts, or pipelines other than the SMIS AT front-end application

developed alongside it, widening the array of potential future uses of the collected data.

On the whole the SMIS software could be said to depend on the so-called MEAN stack (the MongoDB,

Express.js, Angular, and Node.js technologies working in tandem), with Angular used on the front-end

(supported by other libraries as described in Section 3) and the remaining three components

(MongoDB, Express.js and Node.js technologies) of the stack used at the back-end.

Development of a Horticultural Soil Management Information System
SMIS Technical Documentation Report

6

3. FRONT-END – SMIS AT

3.1. OVERVIEW

The SMIS AT front-end application was implemented in the TypeScript programming language

following the ECMAScript 2016 (ES2016) syntax and using Google’s Angular (version 6) framework,

with development supported by its associated toolchain, including the Angular CLI used with scripts

allowing development builds, high-performance production builds, and the automatic generation of

documentation using Compodoc. The npm package manager was used to manage project

dependencies.

User interface dependencies

The open source PrimeNG user interface component library was used in constructing the SMIS user

interface and provided a basis for the Sassy Cascading Style Sheet (SCSS) styling used via PrimeNG

themes. In particular, the high-performance data table (TurboTable) component was adapted for use

as a central part of the more complex SMIS database browsing component (see Section 3.3), and the

availability of this structure was a major reason for choosing this component library over alternatives.

Visualisation dependencies

Plotly.js, an open source graphing library built on top of the lower-level d3.js and stack.gl libraries, was

used to implement custom visualisation components for several views within the application (see

Section 3.3). This choice was made based on the large variety and customisability of the visualisation

options available in the Plotly.js library and the relative ease of applying further modifications using

plain d3.js. The existence of analogous libraries for different environments (Plotly is also available for

Python, MATLAB, and R) was also considered to be an asset, as was the ease of porting visualisations

between those environments which could facilitate expansion or adaptation of the SMIS platform to

make use of those technologies - two of which, Python and R, are already used on the SMIS back-end.

The Cytoscape.js open source library was used for rule base graph visualisation, providing an intuitive

overview of collected modelling results generated by SMIS AT based on a well-supported graphing

interface.

Development of a Horticultural Soil Management Information System
SMIS Technical Documentation Report

7

Browser support

The Babel package was used to emulate ES2016 functionality for Web browsers which do not fully

support it yet. The Web application has been tested to work on Chrome (version 58+), Firefox (50+),

Safari (11+), and Edge (17+) browsers. Internet Explorer is not supported as it has been discontinued.

3.2. SERVICES

Five Angular services were implemented to provide a way for the front-end components to access

external data (MongoDB database collections and configuration files) via dependency injection. These

services are:

 GrowerService – provides methods for retrieving data stored in the grower collection of the

SMIS database, containing data collected from growers (to be displayed in filterable tables) as

well as summaries of grower data generated on-the-fly on the SMIS back-end, accessed

through the SMIS API REST interface.

 LiteratureService – provides methods for retrieving data stored in the literature collection of

the SMIS database, containing the curated literature data collected during the SMIS project

(to be displayed in filterable tables), accessed through the SMIS API REST interface.

 ExperimentService – provides methods for retrieving data stored in the experiment collection

of the SMIS database, containing the curated literature data collected in the SMIS project (to

be displayed in filterable tables), accessed through the SMIS API REST interface.

 AnalyticsService – provides access to the analytics functionalities of the back-end through the

SMIS API REST interface, either retrieving pre-existing results from the results collection or

generating new queries on-the-fly; this process is opaque to the front-end as all generated

results are saved (and indexed by the query used) and the back-end will always send a pre-

existing result if available instead of re-running an analysis.

 ConfigService – provides access to front-end configuration options stored in JavaScript Object

Notation (JSON) format files which can be modified by an administrator to change the

behaviour of the user interface as described in section 6.1.

The three services corresponding to SMIS database classes were implemented as child classes of the

abstract SMISTableService class which defines a common interface and a set of methods for

interacting with the SMISTableComponent component used to display filterable tables of the data

collections stored in the database. Additional methods for retrieving data summaries used for

visualisations are implemented separately for each respective collection in their own class.

Development of a Horticultural Soil Management Information System
SMIS Technical Documentation Report

8

For all four services (GrowerService, LiteratureService, ExperimentService and AnalyticsService) which

interact with the back-end via the REST interface, the implementations are extremely simple and

limited to processing the input (stringification and URI encoding of JSON objects), formatting and

making a GET request via HTTP, followed by returning an Observable (dependent on the RxJS library)

which allows asynchronous access to the request results. Data processing and most checks for input

correctness are carried out on the back-end.

3.3. USER INTERFACE MODULES AND COMPONENTS

The front-end implementation has been split into the following modules:

 AppModule – top-level (root) module of the application, imports all other modules and

contains the MainMenuComponent which implements the sidebar used for site navigation

and the NotificatorComponent used for displaying notifications on the main page. Uses the

ConfigService to retrieve configuration settings used by other modules.

 AppRoutingModule – router module which defines the rules for site navigation.

 SMISTableModule – contains the SMISTableComponent, which extends the PrimeNG

TurboTable to allow for advanced filtering and support server-side pagination.

 QueryConstructorModule – contains the QueryConstructorComponent which is a complex

form allowing for the selection of dependent/independent variables to be used in machine

learning, as well as the addition of filters used to limit analytics to a subset of the database.

Individual parts of the QueryConstructorComponent interface can be hidden and have their

values hard-coded (preselected variables, mandatory filter fields, preselected method).

 FactorModule – contains the FactorBarsComponent which uses the Plotly.js graphing library

to display bar plots based on the output of an AnalyticsService query. The bar plots display

details of the variable distribution and show a breakdown of categorical variable coefficients

on clicking a column corresponding to such a variable. The FactorBarsComponent is used for

visualising the results of established queries.

 GrowerModule – contains the GrowerComponent, which shows a filterable data table

(SMISTableComponent) of grower data, the HectarageComponent which visualises the

hectarages for different crops/varieties present in the database using a Plotly.js line plot, and

the YieldOverviewComponent, which visualises a breakdown of normalised yield by variety

using a Plotly.js bar plot. Uses the GrowerService.

Development of a Horticultural Soil Management Information System
SMIS Technical Documentation Report

9

 LiteratureModule – contains the LiteratureComponent, which shows a filterable data table

(SMISTableComponent) of literature data, including hyperlinks to papers. Uses the

LiteratureService.

 ExperimentModule – contains the ExperimentComponent, which shows a filterable data table

(SMISTableComponent) of experimental data. Uses the ExperimentService.

 QueryModule – contains the QueryEditorComponent, which uses a fully customisable (i.e. no

hidden or hard-coded options) QueryConstructorComponent component to construct queries

and execute queries, and the ResultTableComponent, which displays regression results in a

simple paginated table. Uses the GrowerService, LiteratureService, ExperimentService, and

AnalyticsService and imports the QueryConstructorModule.

 GraphModule – contains the RuleBaseComponent which displays a Cytoscape.js graph of

Established Query results with a network of identified connections between variables. A

limited QueryConstructorComponent can be used to filter graph contents. Uses the

AnalyticsService and imports the QueryConstructorModule.

 EstablishedQueryModule – Contains one component for each of the implemented Established

Queries. Each of those components contains a limited QueryEditorComponent set up to use

dependent/independent variables specific to its Established Query and require particular

filters during modelling, with the results displayed by a FactorBarsComponent. Uses the

GrowerService, LiteratureService, ExperimentService, and AnalyticsService and imports the

QueryConstructorModule and FactorModule.

4. BACK-END – SMIS API

4.1. OVERVIEW

The SMIS API back-end application was implemented in the TypeScript programming language

following the ES2016 syntax, with documentation automatically generated using TypeDoc and

packages managed using npm. The application runs in an Node.js environment (via ts-node / pm2),

with the Express.js framework used to implement routing for a REST API which is deployed through

an HTTP server. The SMIS MongoDB (version 3.4+) database is accessed by the application through

the Mongoose Object Data Modelling (ODM) library, which enforces a set of well-defined schemas on

the NoSQL data in order to effectively use them to conduct analyses and serve REST requests.

Development of a Horticultural Soil Management Information System
SMIS Technical Documentation Report

10

A set of pipelines implemented in the R programming language is used to provide machine learning

functionality to SMIS API. The r-script npm module is used to transfer data (in the form of JSON

objects) between the R scripts and the TypeScript application. For the sake of performance, only a

query (rather than data) is passed as the input, and the R scripts fetch data directly from the database

using the mongolite R package instead of relying on the back-end’s Mongoose schemas.

A semi-independent part of the back-end is the Model Building Pipeline implemented in Python which

generates a derivative model collection based on the SMIS stored data. This collection is used as an

intermediary between the raw SMIS data and analytics pipelines. The raw data is interpreted and

transformed into groups of derived variables (e.g. the counts of pesticide applications per year on a

specific field or the rotational context of a field) which are directly usable in the machine learning

regression pipeline. As the Model Building Pipeline needs to be executed only once per database

update, it is not strictly integrated with the rest of the back-end and requires manual execution of a

Python script (this is already completed in the delivered version of the SMIS database).

4.2. REST API AND ROUTING

The SMIS API application starts an Express.js HTTP server which listens for requests to be handled by

one of four available Express routers:

 GrowerRouter

 LiteratureRouter

 ExperimentRouter

 AnalyticsRouter

Each of the routers contains middleware which process the input parameters, parsing them from

Uniform Resource Identifier (URI) strings to JSON objects and validating their values (this includes

verifying the correctness of pagination requests for the three routers serving requests from data table

components). After input validation the router queries the MongoDB database through the

corresponding Mongoose schema object for queries which do not require additional processing (note

that this can also be the case for analytic queries – see Section 4.4) or passes the input to an R pipeline

through the r-script interface.

It should be noted that while from a routing (or data flow) perspective it would be straightforward to

retrieve data during the routing (taking advantage of Mongoose and structured schema classes) and

pass them to the R pipeline for processing, this approach was found to make the r-script package

Development of a Horticultural Soil Management Information System
SMIS Technical Documentation Report

11

potentially unstable when dealing with large volumes of data. Therefore, validated queries are instead

passed to the R pipeline which retrieves the needed data from the SMIS database on its own.

It is possible that future updates to r-script might resolve the instability issue, in which case it might

be better to use the more straightforward implementation instead (which is still present in the code

base but disabled by a comment block).

Once a result of either a database query or an R script execution is received, it is sent as a JSON

response through the HTTP interface. For novel machine learning results which gave a valid output

the result is also persisted in the MongoDB database, identified by the contents of the query which

created them.

4.3. MONGODB DATABASE

The SMIS MongoDB (version 3.4+) database as used by the SMIS API contains five collections (the full

database also includes dictionary collections used for parsing; this is described in the Database

Technical Documentation) listed below:

 grower collection – grower data rows.

 literature collection – curated literature rows.

 experiment collection – experimental data rows.

 model collection – collections of variables derived from grower data by the Model Building

Pipeline (see Section 4.5), used for machine learning.

 rule collection – results of machine learning.

The SMIS API treats the database as essentially static except for the rule collection which saves each

generated result of a valid analytics query. The model collection can also be re-created by re-running

the Model Building Pipeline (see section 4.5), but for an unchanged database the contents of the

collection will be unchanged as well.

4.4. MEMOISATION / CACHING

The SMIS API is designed not to repeat analytics which it has already executed for the same database

and query. Generated results are stored in the rule collection and the router verifies whether a pre-

existing result is available for a particular query (and retrieves it if it already exists). A new analysis is

started through r-script only if no pre-existing results are found. This has the dual use of speeding up

the operation of the application and collecting all the generated results which can then be displayed

together as a graph which visualises all the connections identified among variables of interest.

Development of a Horticultural Soil Management Information System
SMIS Technical Documentation Report

12

4.5. ANALYTICS

Model Building Pipeline

The Model Building Pipeline is a Python script which converts the raw data stored in the grower

collection (which represents individual farm field operations as recorded in Gatekeeper grower

datasets) into groups of variables used in machine learning. These are either straightforward

summaries (e.g. counting the number of fungicide applications in a year on a particular farm field),

more complex variables such as the n-th previous crop (which requires the algorithm to identify the

full rotation used), or even inferred variables not directly present in grower data (e.g. possible

incidence of compaction problems inferred from timing and frequency of subsoiling operations). Prior

knowledge and expert opinion was used in formulating possible inference strategies for variables not

directly recorded in the source data.

A variable generation function was implemented for each of the variables. The sequence of operations

for each individual farm field is retrieved and sorted by date, then processed by each of the variable

generating functions. Variables collected for each field are then persisted to the model collection in

the SMIS database, from which they can be retrieved for use in machine learning.

The pipeline interacts with the SMIS database via the Python PyMongo library rather than the SMIS

REST API for performance reasons. In the case of deploying SMIS using a Virtual Machine (VM) or a

Docker image, the Model Building Pipeline is available in the home directory and can be executed

manually (although for the default SMIS deployment this is not necessary, as the models collection

already exists).

Machine Learning Pipeline

Two machine learning pipelines have been developed in R, one using multiple linear regression, and

another using the random forest algorithm. Only the former is used by default, as it has been more

thoroughly tested by the SMIS development team.

The pipelines receive a query object (a JSON object converted into an R object using the jsonlite

package) which contains a dependent_variable data field, a list of independent_variables (predictors)

to be used, and a filter object containing MongoDB search terms used to select a subset of data to be

used in the analysis. The mongolite package is used to retrieve filtered data from the model collection

Development of a Horticultural Soil Management Information System
SMIS Technical Documentation Report

13

in the SMIS database, and the variables defined by the query object are extracted to be used in

regression.

Predictors undergo feature selection using a stepwise algorithm for multiple linear regression or the

Boruta algorithm (Boruta R package) for random forest. Variable importance is then investigated using

the caret package. The pipelines return a list of variables (predictors) sorted by their variable

importance and accompanied (for multiple linear regression) by coefficients for each variable (or each

value of a categorical variable) which are used to generate visualisations in the front-end.

5. DEPLOYMENT

5.1. OVERVIEW

Two primary options for deploying the SMIS applications have been developed: a Virtual Machine

(VM) and a Docker image, both using Ubuntu Server with all dependencies installed and both SMIS

applications deployed using the pm2 process manager for load balancing. While internally the SMIS

AT and SMIS API applications use different ports, the containers use a reverse proxy setup (HAProxy)

to expose both applications on port 80 (by default SMIS AT is at http://localhost:80, and SMIS API is

at http://localhost/api:80). The port can be forwarded on the host machine so that the SMIS Web

application can be made available over a network.

Both the Docker image and the VM contain a “configure_smis.sh” shell script in their home directories.

The script allows an administrator to change the host URL and ports to be used through a series of

prompts.

6. MANUAL

6.1. CONFIGURATION FILES

The look and behaviour of certain user interface elements within the SMIS AT Web application can be

changed by modifying configuration files which are stored in the assets/config directory of the front-

end application, also accessible (as the config directory link) through the home directory of the Docker

image used in deployment.

The configuration files and their associated options are described below.

Development of a Horticultural Soil Management Information System
SMIS Technical Documentation Report

14

Data table column configuration

Three configuration files (grower.col.cfg.json, experiment.col.cfg.json, literature.col.cfg.json) control

the columns and their associated filter options displayed by each of the three data tables used for

data browsing (see Section 3.3). An example of a (simplified) grower column configuration file is

shown below:

{

 "Date": { "hidden": false, "position": 1, "filter_type": "date" },

 "Crop": { "hidden": false, "filter_type": "multi",

 "filter_label": "All Crops", "position": 3 },

 "Variety": { "select": true, "filter_type": "multi",

 "filter_label": "All Varieties", "position": 4 },

 "Heading": { "header": "Field Operations", "select": true,

 "filter_type": "multi",

 "filter_label": "All Field Operations",

 "position": 2 },

 "Yield": { "select": false },

 "Product Name": { "select": false },

 "Texture": { "ignore": true }

}

Key – value pairs match a database column (data field) with a list of options describing how (and if)

the column should be represented in a data table (e.g. "Texture": { "ignore": true } are

the options for the Texture column). Each of the options has a list of valid values it can take. The full

list of options is shown in Table 1.

TABLE 1: DATA TABLE COLUMN CONFIGURATION OPTIONS

Option Valid values Description

header Any character string.
Controls the column header used in the data table.
By default SMIS simply uses the same name the column
has in the database.

hidden true, false

Controls whether the column is shown or hidden when a
user first views the table. When hidden is true, the column
is not displayed in the table but can be selected (provided
ignore is false) from the table.
The default is true.

position Any positive integer.

Controls the starting position of the column in the data
table. Columns are ordered (left to right) from the lowest
position to the highest, although a user can freely
rearrange them.
The default is 0.

filter_type
“text”, “date”,
“multi”, “numerical”

Controls the type of filtering available for this column. The
default setting is “text”.
“text”: the user can enter (case-insensitive) filter text into
a text box.

Development of a Horticultural Soil Management Information System
SMIS Technical Documentation Report

15

“date”: the user can select a range of dates from a
calendar.
“multi”: the user can check any number of elements in a
searchable list.
“numerical”: the user can select a number range (from
lowest to highest).

filter_label Any character string.

Used only when filter_type is “multi”.
Controls the label next to the checkbox which allows the
user to (de)select all values from the multiple selection
box.
By default, the label is simply “All”.

ignore true, false

Controls whether the column is included in the Web
interface. If ignore is true, the column will be shown neither
in the table nor in the column selector.
This option is false by default, but note that columns not
included in the configuration file will be ignored as if the
ignore option was set to true.

It should be noted that while columns present in the database collection are not displayed by default

and therefore using the “ignore: true” option may seem redundant, it does in fact serve an important

function. As the JSON format does not support comments (which could be used to hide undesired

columns), every column present in the database is listed in the configuration files, with all but the

ones the administrators want to show to the users being marked with ignore: false, making it easy to

add/remove any individual column from the view.

An empty option list (e.g. "Field Name": {}) is essentially equivalent to:

"Field Name": {

"header": "Field Name", "hidden": true,

"position": 0, "filter_type": "text",

"ignore": false

}

Note that the configuration files are part of the front-end application executed on the client side, so

a user could potentially modify their own copy to gain access to columns which the administrators

have opted to ignore in the interface. This means ignoring columns to hide them from users should

not be considered a means of securely ensuring data remains unavailable to users, but only a means

of hiding unnecessary detail in the interface. The contents of the database were sanitised and

anonymised during the database construction and do not contain sensitive data by design.

Development of a Horticultural Soil Management Information System
SMIS Technical Documentation Report

16

User interface configuration

Several interface user interface configuration options stored as key-value pairs can be changed by an

administrator by editing the ui.cfg.json file. The options are described in Table 2.

TABLE 2: USER INTERFACE CONFIGURATION OPTIONS

Option Valid values Description

store_session_layout true, false

Controls whether layout changes made by a
user (e.g. reordering or hiding data table
columns) should be kept for that user for the
duration of the session. If false, the layout is
restored to its default state when a view is
refreshed.
The default is true.

notification_area “top”, “local”

Controls the location of notifications shown to
the user (e.g. ones instructing them on how to
zoom out after a user zoomed in or informing
the user that an analysis failed). If set to “top”,
the notifications are all displayed in a common
area on the top of the page. If set to “local”,
individual components display their own
notifications.
The default is “local”.

grower_data_summary “rows”, “hectares”

Controls whether the amount of data available
for a given filter setting in the grower data
table (displayed at the bottom) should be
expressed in terms of data rows or hectares.
The default is “rows”.

smis_api_url
Any valid HTTP
URL.

The URL and port corresponding to the SMIS
API.
This is set automatically when running the
configuration script prior to deploying the
application but can also be changed manually.

machine_learning_pipeline “mlr”, “rf”

Controls the machine learning pipeline
requested by the front-end.
“mlr”: Multiple Linear Regression pipeline.
“rf”: Random Forest pipeline.
The default is “mlr”.

