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2 Summary  

Legume crops provide a number of agronomic, environmental and nutritional services. Therefore, 

increasing their production area has been proposed as a key lever in the agro-ecological transition. But with 

less than 5% of agricultural land in 2018, legume production area remains very low in the European Union 

(EU). In this context, identifying legume suitable areas (i.e. regions where it is possible to achieve high and 

stable yields) appears essential. Here we developed a data-driven approach that combines observed crop 

yields in field experiments with machine learning techniques to model crop yield from climate inputs in the 

EU. The fitted models are then applied over the whole EU agricultural area to make yield projections under 

historical climate (2000-2020), for 5 grain legumes: soybean, field pea, fababean, chickpea and lentils.  

Crop yield data were obtained from an updated version of the dataset presented in Part A of the Deliverable 

D1.4 of LegValue. This updated version of the dataset is named the “European Grain Legume Dataset” 

(EGLD) and contains a total of 6488 yield data collected from published and non-published field experiments 

all over Europe ranging from 1973 to 2020. The EGLD was combined with a global climate dataset designed 

for crop modelling (JRA55-CDFDM-S14FD dataset). Crop yield was modelled as a function of 5 climate 

variables (minimum and maximum temperatures, rainfall, solar radiation, and reference 

evapotranspiration) defined at a monthly time step over crop-specific growing seasons. Growing seasons 

were defined based on observed sowing and harvest months in the EGLD, and winter and spring types were 

treated as separate crops for field pea, fababean, chickpea and lentil. The model was fitted using a Random 

Forest algorithm. 

The overall predictive ability of the model is good, with an R² of 0.85 between observed and predicted yields 

across all crops based on cross-validation. At the individual crop level, the predictive ability of the model is 

very good for winter chickpea, spring lentil and soybean (R² ≥ 0.85), good for field pea and fababean (spring 

and winter) (R² ≥ 0.75), and medium for winter lentil and spring chickpea (R² ≥ 0.60). Distributions of model 

residuals were centred on zero, indicating no systematic bias. Model residuals showed no association with 

latitude, average in-season tmax and total in-season rainfall for any crop, indicating that the model 

performs equally well under, respectively, low and high latitudes, cool, warm, dry, and wet environments. 

However, the model over-estimates low yields and under-estimates high yields. Yield projections under 

historical climate (2000-2020) suggest high climatic suitability for most crops, as projections reveal large 

areas where projected yields are higher than the actual average national yield based on official statistics. 

High-yielding areas in Europe are identified for each crop. 

Future work will include: (i) publication of a data paper describing the public version of the European Grain 

Legume Dataset, with data hosted on a data repository accessible for download to anyone; (ii) model 

improvements, including stratified sampling to better handle unbalanced data, adding variables describing 

soil properties (e.g. pH, texture, water-holding capacity) in the model, and using recently developed 

methods to facilitate model predictions interpretation (partial-dependence plots and Local Interpretable 

Model-agnostic Explanation); (iii) contribution to the development of a Decision Support Tool aiming at 

helping farmers to identify how best introducing legume crops into their cropping systems (Legvalue Task 

1.4) by integrating the predicted yield values into the Decision Support Tool; (iv) making yield projections 

under future climate scenarios; (v) publication of the results in scientific journals.  

Finally, the results of this work are also expected to support future research and development activities on 

grain legumes in the EU. We believe our results should help breeders to define genetic traits relevant for 

grain legumes adaption to current and future climatic conditions in the EU, and be of interest to seed 

companies for estimating the potential seed market for each legume crop (including winter and spring 

types). By identifying important relationships between climate and crop yield, this work should also provide 

a useful basis for any further research on the impact of climate change on the development of legumes in 

Europe.  
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3 Introduction 

Because of the number of agronomic, environmental and nutritional services they provide, increasing 

the area under legume crops is often proposed as a key lever in the agro-ecological transition. 

However, in spite of European and national public policies supporting legumes, their area remains less 

than 5% of the European Union (EU) agricultural land in 2018 (Food and Agriculture Organization of 

the United Nations, 2019). Many socio-economic and agronomic factors explain this situation (Magrini 

et al., 2016; Zander et al., 2016). From an agronomical perspective, the high instability of legume yields 

has been identified as a key point (Cernay et al., 2015). In order to accompany the development of 

legumes at the EU level, the identification of areas favourable to their cultivation, i.e. regions where it 

is possible to achieve high and stable yields, therefore appears essential. Although an initial 

identification of favourable areas for soybean (Glycine max) in Europe has been carried out (Guilpart 

et al., 2020), this information is not available for several legume species. Moreover, this work has 

shown the importance of using data collected in Europe to identify favourable areas in a robust 

manner. However, the databases currently available for legumes (on a global or European scale) 

contain few data located in Europe. That is why one of the objectives of LegValue WP1 is to try to shed 

light on these aspects and to determine achievable yields of the most common pulse species grown in 

the EU, namely soybean (Glycine max), field pea (Pisum sativum), faba bean (Vicia faba), chickpea 

(Cicer arietinum), and lentils (Lens culinaria). 

In Task 1.2 of WP1, we intended to produce EU achievable yield maps for these five major pulse species 

according to current soil and climate conditions with the following objectives: (i) allowing more precise 

and realistic estimations of protein and starch yield from pulses in current and future scenarios of 

legume presence in cropping systems; (ii) identifying research gaps and technological lock-ins currently 

hampering a higher share of pulses in cropping systems, (iii) identifying sites with high productive 

potential for pulses that are currently unexplored in the EU, (iv) setting for a step up for science on 

legume crop management by highlighting ways to improve the existing knowledge on the topic.  

To generate these maps of achievable yields, a data-driven approach making use of machine-learning 

techniques to relate observed yields to climate conditions is applied. This approach has been 

successfully used by Guilpart et al. (2020) on soybean in Europe, but requires a substantial amount of 

data reporting observed yields in a range of climate conditions. To this aim, a dataset named the 

European Grain Legume Dataset has been developed by collecting data from: (i) papers published in 

scientific journals and reporting yields of grain legumes measured in field experiments, (ii) the field 

trials performed in the Legato European research project (http://www.legato-fp7.eu/), (iii) non-

published field experiments gathered from LegValue partners. Details about methodology used to 

develop this dataset, and descriptive statistics of the final product are available in the Part A of the 

Deliverable D1.4.  

The present report, which is the part B of the deliverable D1.4, contains: (i) a short description of the 

updated version of the European Grain Legume Dataset that is used here, (ii) details about the methods 

used to model crop yields from climate inputs, (iii) an assessment of model quality, and (iv) projections 

of grain legume yield over the whole European agricultural area based on the fitted model. 

http://www.legato-fp7.eu/
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4 Materials and methods 

4.1 Data sources  

4.1.1 Yield data: The European Grain Legume Dataset 

The crop yield dataset used here is an updated version of the dataset described in the deliverable D1.4-

Part A. This updated version is named the “European Grain Legumes Dataset” (EGLD) (Antichi et al., 

2021). It contains more data and has undergone more detailed quality control. It contains a total of 

6488 yield data collected from published and non-published experimentations all over Europe for 5 

different pulses: soybean (n=1577), faba bean (n=1653), field pea (n=2423), chickpea (n=451), and 

lentil (n=384) (Table 1). The dataset covers the 1973-2020 time period, and captures a wide range of 

yield values, from complete crop failure (yield = 0) to very high yield (> 6 t ha-1 of dry matter) (Table 1). 

The dataset contains a number of other variables in addition to crop yield, including geographic 

coordinates of experiments (latitude and longitude), sowing and harvest dates, whether irrigation was 

applied or not (and irrigation quantity if available). Many other variables are available, please refer to 

Table 5 in appendix for a description of all variables included in the dataset. Each line of the European 

Grain Legume Dataset corresponds to an experimental unit, defined as a unique combination of year, 

site, and treatment. 

Table 1. Summary statistics of the European Grain Legume Dataset. 

Crop Soybean Faba bean Field pea Chickpea Lentil All crops 

Number of observations       
Total 1577 1653 2423 451 384 6488 
Irrigated 464 171 111 35 10 791 
Rainfed 650 793 805 251 220 2719 
NA 463 689 1507 165 154 2978 

Time period       
First year 1973 1981 1980 1988 1993 1973 
Last year 2019 2020 2019 2019 2019 2020 

Crop yield (t ha-1 dry matter)       
Minimum 0.00 0.01 0.07 0.00 0.00 0.00 
Maximum 6.08 10.50 9.74 7.55 7.67 10.50 
Median 3.14 3.25 3.78 1.14 1.14 3.06 
Mean 2.95 3.32 3.75 1.40 1.38 3.04 

 

4.1.2 Historical climate data and climate zones 

Historical climate data. We used the JRA55-CDFDM-S14FD global retrospective meteorological forcing 
dataset (Iizumi et al., 2021). This dataset is an updated version of the global retrospective 
meteorological forcing dataset tailored for agricultural application (GRASP) (Iizumi et al., 2014) with 
improved spatial resolution and temporal coverage. The JRA55-CDFDM-S14FD dataset has been 
developed using the bias-corrected Japanese 55-year reanalysis (JRA55), which was bias-corrected for 
1958-2020 using the cumulative distribution function-based downscaling method (CDFDM), and the 
global retrospective meteorological forcing dataset (S14FD) for 1961–2000 as the reference. The 
JRA55-CDFDM-S14FD dataset contains daily values of several climatic variables relevant to crop growth 
and yield: maximum (tmax, degree Celsius) and minimum (tmin, degree Celsius) air temperatures at 
2m, total precipitation (rain, mm day-1), mean downward shortwave radiation flux (solar, W m-2), mean 
relative humidity at 2m (RH, %), mean wind speed at 10m (wind, m s-1). These variables are available 
for the period 1958–2020 at a spatial resolution of 0.5 degree. Five variables were selected to model 
crop yield: tmin, tmax, rain, solar, and ETo (reference evapotranspiration). Daily ETo was not available 
in the JRA55-CDFDM-S14FD dataset, so it was calculated using available variables. To this aim, clear 
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sky transmissivity (cst) was calculated as a function of solar radiation, date, and latitude using the cst() 
function of the sirad R package; and daily actual vapor pressure (ea, kPa) was calculated using Equation 
1 from relative humidity and tmin and tmax following FAO recommendations (Allen et al., 1998). 
 
Equation 1 

 

𝑒𝑎 =  
𝑅𝐻

100
×

0.6108 × 𝑒
(

17.27×𝑡𝑚𝑎𝑥
𝑡𝑚𝑎𝑥+237.3

)
+ 0.6108 × 𝑒

(
17.27×𝑡𝑚𝑖𝑛
𝑡𝑚𝑖𝑛+237.3

)

2
 

 
 
Then, daily total reference evapotranspiration (ETo, mm) was calculated as a function of tmax, tmin, 
solar, ea, wind, cst, latitude, and elevation using the et0() function of the sirad R package, which uses 
the FAO Penman-Monteith evapotranspiration equation (Allen et al., 1998). Finally, monthly averages 
of tmin, tmax, solar, rain, and ETo were calculated, and these monthly values were used to model crop 
yield from climate inputs. Other meteorological forcing datasets are available (Ruane et al., 2015), but 
uncertainties associated with different datasets are small at monthly time scale. 
 
Climate zones. To identify in which climate zones the yield data contained in the European Grain 

Legume Dataset presented in Table 1 were present or absent, we used the climate zonation scheme 

developed by the Global Yield Gap Atlas (GYGA). This climate zonation scheme has been developed to 

be relevant to crops and cropping systems (van Wart et al., 2013) and the data are available at 

http://www.yieldgap.org/download_data. This dataset will be referred to as GYGA-ED (Global Yield 

Gap Atlas – Extrapolation Domain). 

4.1.3 Cropland data 

We used the EarthStat data (Monfreda et al., 2008) for total agricultural area (cropland plus pastures), 

which is representative of agricultural area around the year 2000, and is available at 

http://www.earthstat.org/cropland-pasture-area-2000/. 

4.2 Model fitting and projections 

4.2.1 Data preparation 

Data selection. A subset of the European Grain Legume Dataset was used for fitting the model. To get 

this subset, we first removed all data for which at least one of the following fields was not reported: 

sowing year, sowing month, latitude, and longitude. When harvest year was missing, it was defined as 

the year of sowing if sowing occurred before the 1st of September or as the year of sowing +1 if sowing 

occurred after the 1st of September. Then, all data corresponding to irrigated conditions (indicated as 

“Y” in the referred column of the dataset) were removed before modelling. When the information 

about if irrigation was applied or not was missing (indicated as “NA”), the yield data was kept. Two 

main reasons underlined this choice: (i) the considered crops are not often irrigated (except soybean), 

so that the number of irrigated experiments in the dataset is quite low, especially in comparison with 

rainfed experiments (Table 1), and (ii) the amount of irrigation water applied is not often reported, 

even when the experiment is indicated as irrigated. We therefore modelled achievable yield under 

rainfed conditions. All yield data were expressed at a standard moisture content of 13%. The final 

dataset used for modelling contained a total of 4960 yield data, including 951 for soybean, 319 for 

chickpea, 290 for lentil, 1334 for faba bean, and 2066 for field pea. 

 

http://www.yieldgap.org/download_data
http://www.earthstat.org/cropland-pasture-area-2000/
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Table 2. Growing season used for each crop species. These growing seasons were defined based on Figure 1. 

Crop Spring Winter 

Soybean April – October - 
Faba bean February – September October – August  
Field pea February – September October – August 
Chickpea January – October November – July  
Lentil February – September October – June  

 

 

Figure 1. Distribution of sowing and harvest dates by crop in the European Grain Legumes Dataset. Each line is 
an experimental unit, i.e. a unique combination of experiment, treatment and year. Faba bean (A), field pea (B), 
chickpea (C), and lentil (D) can be sown as winter or spring crops, whereas soybean (E) is only sown as a spring 
crop. Growing season of winter crops starts in year n and ends in year n+1.  
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Growing season definition. The distribution of observed sowing and harvest months of selected data 

is shown in Figure 1. Faba bean, field pea, chickpea and lentil are grown either as winter (sowing occurs 

from October to December) or spring (sowing occurs mainly from February to April), whereas soybean 

is always sown between April and May. Based on these results, we defined the growing season from 

April to October for soybean, which is consistent with Guilpart et al. (2020). For the other crops, one 

growing season was defined for winter crops and another one for spring crops (Table 2). Sowing and 

harvest dates change with latitude (see Figure 7 in appendix), but to keep the model as simple as 

possible, fixed growing seasons were defined. The defined growing seasons were designed to include 

earliest sowing dates and latest harvest dates observed Figure 1. Then, all data were classified as 

winter or spring crops, respectively, if sowing occurred after or before September within a given year. 

Linking yield to climate data over the growing season. Each yield data was associated with climate 

data (from the JRA55-CDFDM-S14FD dataset) over the corresponding crop growing season based on 

its geographical coordinates and year of sowing. 

4.2.2 Model fitting and evaluation 

Crop yield data were related to the five considered climate variables defined at a monthly time step 

over the months of the growing season as described in Equation 2, where tmin (°C) is the monthly 

average of daily minimum temperature, tmax (°C) is the monthly average of daily maximum 

temperature, rain (mm day-1) is the monthly average of daily rainfall, solar (W m-2) is the monthly 

average of daily downward shortwave radiation, and ETo is the monthly average of daily reference 

evapotranspiration (mm day-1). The number indicated as a suffix indicates the month of the growing 

season, so that tmin.2 is the average daily minimum temperature in the 2nd month of the growing 

season. And n is the length of the growing season in months. The growing season varied between crops 

as presented in Table 2. All crops but soybean could be grown either as winter crops or spring crops. 

Winter and spring types were considered as different crops. We therefore fitted the model described 

in Equation 2 to the following nine cases: soybean, spring and winter faba bean, spring and winter field 

pea, spring and winter chickpea, and spring and winter lentil. 

Equation 2 

𝑦𝑖𝑒𝑙𝑑 ~ 𝑡𝑚𝑖𝑛. 1 +  𝑡𝑚𝑖𝑛. 2 + ⋯ +  𝑡𝑚𝑖𝑛. 𝑛 

+ 𝑡𝑚𝑎𝑥. 1 +  𝑡𝑚𝑎𝑥. 2 + ⋯ +  𝑡𝑚𝑎𝑥. 𝑛 

+ 𝑟𝑎𝑖𝑛. 1 +  𝑟𝑎𝑖𝑛. 2 + ⋯ + 𝑟𝑎𝑖𝑛. 𝑛 

+ 𝑠𝑜𝑙𝑎𝑟. 1 + 𝑠𝑜𝑙𝑎𝑟. 2 + ⋯ + 𝑠𝑜𝑙𝑎𝑟. 𝑛 

+ 𝐸𝑇𝑜. 1 + 𝐸𝑇𝑜. 2 + ⋯ + 𝐸𝑇𝑜. 𝑛 

The model described in Equation 2 was fitted using a Random Forest (RF) algorithm using the R 

software v3.4.0 with the ranger() function of the ranger package (Wright & Ziegler, 2017) with a 

number of trees set to 500 and default values for other parameters. Variables importance was 

measured using the “impurity” option of the “importance” argument in the ranger() function, which 

corresponds to the variance of the responses for regression. The model predictive ability was assessed 

using a bootstrap approach with 25 out-of-bag samples generated by bootstrap, using the train() 

function of the caret R package, and was measured by computing the R² of the linear regression 

between observed and predicted yields, and the root mean square error of prediction (RMSEP, t ha-1). 

Model residuals (observed yield minus predicted yield) were analysed for their distribution and 

relationship with observed yield, latitude, average in-season tmax and total in-season rainfall. 
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4.2.3 Yield projections 

Yield projections were performed over the whole European agricultural area using the fitted model for 

each crop and the JRA55-CDFDM-S14FD climate data. Projections were performed every year from 

2000 to 2020. Then the average yield over those years was computed and mapped. All projections 

assumed no irrigation and the growing seasons presented in Table 2. A common challenge when doing 

such projections, is to ensure that the combination of environmental conditions under which the 

model is calibrated are similar to the environmental conditions to which the model is projected, 

although a reasonable degree of extrapolation might be acceptable (Fitzpatrick & Hargrove, 2009). We 

addressed this challenge in two ways. First, yield projections are shown only on existing agricultural 

area (cropland + pastures) (Ramankutty et al., 2008). Second, to identify climatic conditions captured 

in the training dataset of our model, we retrieved minimum and maximum values of each climatic 

variable as observed in the training dataset (see examples in Figure 14 to Figure 18 for spring crops in 

appendix). Then, every single value of every climatic variable in the projection dataset (i.e. whole 

Europe) was classified as in-range of training data (i.e. higher or equal than minimum and lower or 

equal than maximum) or out-of-range of training data (i.e. lower than minimum or higher than 

maximum). This was done on a pixel basis, for every crop and every year from 2000 to 2020, taking 

into account crop-specific growing seasons as defined in Table 2. Then the frequency of out-of-range 

events over all years and climatic variables was calculated over the 2000-2020 period and mapped (see 

Figure 19 and Figure 20 in appendix). This allowed to identify areas in Europe where climate is 

frequently out-of-range of training data. Then, yield projections were shown only in areas where the 

frequency of out-of-range events did not exceed 20% for soybean, pea, and fababean, and 40% for 

chickpea and lentils. This procedure allowed to ensure that the combination of environmental 

conditions under which the model was calibrated are similar to the environmental conditions to which 

the model is projected, while accepting a reasonable degree of extrapolation. We also used the GYGA-

ED climate zonation scheme (van Wart et al., 2013) to map, for each crop, all climate zones containing 

at least one experiment of the European Grain Legumes Dataset.  

5 Results and discussion 

5.1 Assessment of model performances 

Comparison of observed and predicted yields. The predictive ability of the model is good, with an 

overall R² of 0.85 between observed and predicted yields across all crops based on cross-validation 

(Figure 2). The comparison of observed and predicted yields shows the model has no systematic bias 

as points align along the 1:1 line for all crops. The model is also able to reproduce the wide range of 

observed yields for all crops. At the individual crop level, R² values range from 0.60 (winter lentil) to 

0.91 (winter chickpea) (Table 3 and Figure 8 in appendix). Winter chickpea, spring lentil and soybean 

have R² ≥ 0.85; field pea and fababean (both spring and winter) have R² between 0.75 and 0.80; and 

spring chickpea and winter lentil have R² between 0.60 and 0.65. Based on those results, the model 

predictive ability can be considered as (i) very good for winter chickpea, spring lentil and soybean, (ii) 

good for field pea and fababean (spring and winter), (iii) medium for winter lentil and spring chickpea. 

Analysis of model residuals. The distribution of model residuals is centered on zero for all crops (see 

insets in Figure 8 in appendix)). Model residuals show no association with latitude (Figure 9), average 

in-season tmax (Figure 10) and total in-season rainfall (Figure 11) for any crop. This demonstrates that 

the model performs equally well under, respectively, low and high latitudes, cool/warm and dry/wet 

environments. However, model residuals are positively associated with observed yields for all crops 

(Figure 12). The model therefore over-estimate low yields and under-estimate high yields. This 
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conservative behaviour of the model has already been observed with Random Forest used for crop 

yield predictions in previous studies (Guilpart et al., 2020; Jeong et al., 2016). 

Table 3. Predictive ability metrics of the Random Forest algorithm for the different crops. For each crop, the 
model is evaluated using a classical bootstrap approach with 25 resamplings, and out-of-bag predictions are 
compared to observed yields. Then R² and Root Mean Square Error of Prediction (RMSEP, in t ha-1) are calculated. 
Crops are ordered by decreasing value of R². Yields values are expressed at a standard moisture content of 13%. 

Crop n* 
Average yield 

(t ha-1) 
R² 

(no unit) 
RMSEP  
(t ha-1) 

Winter chickpea 130 1.33 0.91 0.38 (29%)** 
Spring lentil 149 1.87 0.91 0.41 (22%) 
Soybean 951 3.29 0.85 0.50 (15%) 
Winter field pea 454 4.33 0.80 0.85 (20%) 
Spring faba bean 1058 4.04 0.78 0.83 (21%) 
Winter faba bean 276 2.95 0.75 1.26 (43%) 
Spring field pea 1612 4.39 0.75 0.71 (16%) 
Spring chickpea 189 1.11 0.64 0.59 (53%) 
Winter lentil 141 1.17 0.60 0.56 (48%) 

* number of observations in training dataset 

** value in parenthesis represents RMSEP as a percentage of average yield in training dataset 

 

 

Figure 2. Assessment of the Random Forest algorithm for the different crops considered in this study. For each 
crop, the model is evaluated using cross-validation (unstratified bootstrap approach with 25 resamplings), and 
out-of-bag predictions are compared to observed yields. The black line represents the linear regression between 
observed and predicted yields. Linear regression outputs are shown on the top left of the panel. The dotted line 
represents the 1:1 line. Each coloured dot shows the comparison of observed and predicted yields for one 
experimental data of one peculiar crop. Yield values are expressed at a standard moisture content of 13%.   
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Variable importance. Variables importance is presented in Figure 13 in appendix for all crops and all 

variables. Table 4 gives the 5 most important variables for each crop. These results provide interesting 

insights about key climatic variables for yield formation of these crops. However, further analysis is 

required here to compare these results with ecophysiological knowledge on these crops, which is out 

of the scope of the present report. 

Table 4. Top 5 most important climate variables for each pulse as identified by the Random Forest algorithm. 
tmin (°C) is the monthly average of daily minimum temperature. tmax (°C) is the monthly average of daily 
maximum temperature. rain (mm day-1) is the monthly average of daily rainfall. solar (W m-2) is the monthly 
average of daily downward shortwave radiation. ETo (mm day-1) is the monthly average of daily reference 
evapotranspiration. The number indicated as a suffix indicates the month of the growing season. For example, 
tmax_5 is the average daily maximum temperature in the 5th month of the growing season which is August for 
soybean. For winter crops, the growing starts in year n and ends in year n+1. 

Crop n* Growing season 
Top 5 most important variables  
(by order of importance) 

   1 2 3 4 5 

Soybean 7 April – October rain_4 rain_3 tmin_1 tmin_3 tmax_1 
Faba bean – spring  8 February – September ETo_7 solar_11 solar_2 ETo_6 solar_7 
Faba bean – winter  11 October – August tmin_2 tmin_11 tmax_2 solar_8 tmax_8 
Field pea – spring  8 February – September ETo_5 solar_2 rain_4 rain_7 solar_3 
Field pea – winter  11 October – August solar_9 rain_10 solar_11 ETo_9 solar_10 
Chickpea – spring  10 January – October tmin_4 solar_6 ETo_4 tmin_1 tmin_3 
Chickpea – winter 9 November – July ETo_9 solar_9 tmin_3 ETo_5 ETo_1 
Lentil – spring 8 February – September solar_3 solar_5 ETo_6 solar_6 rain_7 
Lentil – winter  9 October – June solar_1 rain_2 tmax_3 ETo_1 tmin_3 

* length of the growing season in month 

 

5.2 Yield projections under historical climate 

Assessing where projections are reliable. Yield projections under historical climate (2000-2020) are 

presented in Figure 3 for spring crops, and in Figure 4 for winter crops. Projections are restricted to 

areas where climate conditions are similar enough to the climate conditions under which the model 

was trained (see methods). This approach reveals two groups of crops: (i) a “high coverage” group for 

which projections could almost be made over the whole European agricultural area, including soybean, 

fababean (spring and winter), pea (spring and winter), and spring lentil; and (ii) a “low coverage” group 

for which projections could be made only on a small part of the European agricultural area, including 

winter lentil and chickpea (spring and winter). These two groups reflect the amount and location data 

available in the European Grain Legume Dataset to train the model. Indeed, as compared to crops in 

the low coverage group, crops in the high coverage group have a much larger amount of data available 

in the European Grain Legume Dataset (see Table 1), and corresponding experiments are located in a 

much wider variety of places (see Figure 21 to Figure 29 in appendix). Therefore, climatic conditions 

captured in the model are much wider for crops in the high coverage group. This highlights a need for 

data collection for crops in the low coverage group to increase the range of climate conditions captured 

in the model.  

Yield projections under historical climate suggest high climatic suitability for pulses in Europe. Yield 

projections presented in Figure 3 and Figure 4 suggest high climatic suitability for pulses in Europe. 

Indeed, these projections reveal large areas where projected yields are higher than the actual average 

national yield (Figure 5, Figure 6, and Table 6). This is especially true for soybean, pea and fababean. 

This confirms that the current extent of harvested areas for these crops is not limited by climate. This 

conclusion holds for lentil and chickpea, although to a lower extent because projections for these crops 



  

This project has received funding from the European Union’s Horizon 2020 research and innovation 
programme under grant agreement N°727672 

14 

are limited to some parts of Europe to prevent from making extrapolation of the model outside of the 

climatic conditions captured in the training dataset. 

Identification of high-yielding areas. Yield projections presented in Figure 3 and Figure 4 allows to 

identify high-yielding areas in Europe. For soybean, highest yield areas (≥ 3 t ha-1) are located between 

the south of France and the south of Belarus and northern Ukraine, including southern Germany, Czech 

Republic, Poland, Hungary, northern Romania and northern Italy. Spring fababean display a strong 

north-south gradient with highest yielding areas (≥ 4 t ha-1) in the north, including the UK, Ireland, 

Belgium, the Netherlands, Denmark, northern Germany, northern Poland and Baltic states. In contrast, 

high yielding areas of winter fababean are located in Spain, Turkey, and the UK. High-yielding areas for 

spring pea (≥ 4 t ha-1) are located in the north-west of Europe, including France, Belgium, The 

Netherlands, Denmark, Germany, the UK and Ireland, while winter pea high-yielding areas (≥ 4.5 t ha- 1) 

are concentrated in western France. High-yield areas for winter chickpea are located in the south of 

Europe, including southern France, Spain, Italy, Romania, Bulgaria, Greece and Turkey. Spring chickpea 

high-yielding areas appear to be located a bit more in the north, but with no major differences. Lentil 

displays contrasted projections for the spring type, with high yielding (≥ 2.5 t ha-1) areas located in the 

north of Europe, including France, Germany, Belgium, the Netherlands, Denmark, Poland, Belarus, and 

Baltic States, and winter type with high-yielding areas mostly located in western France. Although the 

comparison is difficult because of different spatial scales, these general patterns appear consistent 

with observed actual yields at national levels from official statistics (Figure 5). Across all crops, spring 

fababean displays the highest projected yield level (5 t ha-1), followed by winter pea (4.5 t ha-1), spring 

pea (4 t ha-1), winter fababean (3.5 t ha-1), soybean (3 t ha-1), lentils and chickpea. 

Other factors that may prevent from reaching the projected yield values. We highlight that maps of 

projected yields shown in Figure 3 and Figure 4 should be interpreted as a kind of “yield potential” 

maps. We don’t refer to yield potential as defined by Van Ittersum et al. (2013) where water and  

nutrients are non-limiting and biotic stresses effectively controlled, because we don’t know if 

experiments gathered in the European Grain Legume Dataset fulfil those conditions. However, it is 

widely recognized that growing conditions in experimental plots are not always similar to the 

conditions experienced by the crops in commercial farmers’ fields, with crop yields measured in 

experimental plots being often higher than in farmers’ fields (Lobell et al., 2009). Moreover, timely 

sowing is required to ensure a good yield level can be achieved, and this depends at least on two 

factors that are not taken into account by our models: (i) rainfall distribution within a month, and (ii) 

constraints on sowing date imposed at the cropping system level, especially by the preceding crop in 

the crop sequence (Ballot et al., 2019; Rizzo et al., 2021). In addition to these agronomic 

considerations, we highlight that economic context is likely to influence the feasibility of legume crops 

as well. This is especially the case where growing another crop (e.g. wheat or maize) is more profitable 

than the five legume crops considered here. In this case, despite a high projected yield, the probability 

of growing a legume crop might still be low relatively to other more profitable crops. 
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Figure 3. Average projected yields (t ha-1) for spring pulses under historical climate (2000-2020). Projections are shown only on agricultural area (cropland plus pastures) in 
the year 2000 and where climate conditions are similar enough to climate conditions in the training dataset (see methods for details). Yield is expressed at a standard moisture 
content of 13% for all crops.  
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Figure 4. Average projected yields (t ha-1) for winter pulses under historical climate (2000-2020). Projections are shown only on agricultural area (cropland plus pastures) in 
the year 2000 and where climate conditions are similar enough to climate conditions in the training dataset (see methods for details). Yield is expressed at a standard moisture 
content of 13% for all crops. 
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Figure 5. Actual yield (standard moisture content) at the country level (average 2010-2019) for the 5 crops considered here. (A) Soybean, (B) Field pea, (C) Faba bean, (D) 
Chickpea, (E) Lentil. Source: FAOSTAT.  
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Figure 6. Maps showing where projected yield is higher than actual average national yield by pulse. Green 
areas show where projected yield is higher than actual average national yield. Grey areas show where projected 
yield is lower than average national yield. No projection was made in white areas because climate was not similar 
enough to climate conditions captured in the training dataset of the model. Projected yields are the average 
yields over 2000-2020 presented in Figure 3 and Figure 4, and actual yield where retrieved from FAOSTAT at the 
national scale and averaged over 2010-2019. 
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5.3 Next steps and perspectives  

5.3.1 Model improvements 

Including soil properties in model predictors. The model(s) developed and presented in this report 

use five climate variables (tmin, tmax, rain, solar, and ETo) defined at a monthly time step (Equation 

2) and relate those variables to crop yield with a Random Forest algorithm. The model(s) used for yield 

projections have then been trained over the whole dataset. The results presented in section 5.1 show 

this approach give good results. However, we think the model can be improved in two ways. First, 

more variables can be included in the predictors. Indeed, crop growth is also known to be sensitive to 

soil type, either through the soil water-holding capacity in the root zone (Guilpart et al., 2017), or 

through physico-chemical properties like pH, cation exchange capacity (CEC), soil organic matter 

content (SOC) and texture (Iizumi & Wagai, 2019; Islam et al., 1980). Moreover, soil texture may also 

affect field trafficability and timely implementation of tillage and sowing or harvesting operations, thus 

indirectly affecting crop yields. Global and regional maps of soil properties do exist, which provide 

some of the above-mentioned variables (Batjes, 2016; de Sousa et al., 2020; Orgiazzi et al., 2018). We 

believe including some soil properties in the predictors should improve the model(s). 

Handling unbalanced data with stratified sampling to train random forest. As shown in Figure 21 to 

Figure 29 (in appendix), the geographic distribution of field experiments that were used to train the 

Random Forest algorithm is not homogeneous: some countries are over-represented in the dataset 

while others are under-represented. Because of this geographical bias, the training dataset of the 

model is considered as unbalanced. The effect of unbalanced datasets due to sampling bias on the 

predictive ability of species distribution models in ecology has been well studied, and some methods 

have been proposed to deal with it (Fourcade et al., 2014; Gaul et al., 2020). Among those methods, 

the stratified sampling approach proposes to create an artificially balanced training dataset by 

performing a stratified sampling of the initial biased dataset. The stratification can be made based on 

geographical space (e.g. systematic sampling) (Fourcade et al., 2014) or based on predictors values 

(Gaul et al., 2020). Even if data quantity has been shown to be more important than its spatial bias for 

predictive species distribution modeling, we argue that a stratified sampling approach could improve 

the predictive ability of our models. 

Develop a model for irrigated conditions. The models presented in this report have been developed 

for purely rainfed conditions only. Although experiments that applied irrigation are available in the 

European Grain Legume Dataset, they were removed before model training. The main reasons 

underlying this choice are: (i) the considered crops are not often irrigated (except soybean), so that 

the number of irrigated experiments in the dataset is quite low, especially in comparison with rainfed 

experiments (Table 1), and (ii) the amount of irrigation water applied is not often reported, even when 

the experiment is indicated as irrigated. However, developing a model for irrigated conditions, at least 

for soybean (which is the most often irrigated crop considered here), appear as an interesting 

perspective to possibly highlight higher yield potential levels when irrigation is also applied. 

Matching climate predictors with crop phenology. The models developed in this work are based on 

monthly climate data. Although attention was paid to select months corresponding to crop-specific 

growing seasons, climate data are not defined based on crop phenology. Previous research has shown 

the relevance of considering weather data at different crop phenological stages, like temperature and 

rainfall from sowing to emergence, or during critical periods for yield formation (e.g. flowering). This 

approach allows to make connections between climate conditions and well-known physiological 

processes of crops like emergence, seed number formation, seed set, or grain filling. This might 

represent interesting perspectives for improving the models developed here. 



  

This project has received funding from the European Union’s Horizon 2020 research and innovation 
programme under grant agreement N°727672 

20 

Accounting for protein yield. As shown in the results section (Figure 3 and Figure 4), projected yield 

levels and location of high-yielding areas differ between crops. However, in addition to grain yield, the 

protein content of harvested grains and therefore the total protein production are of interest. Grain 

protein content varies (i) between crops, with average values of 40% for soybean, 30% for fababean, 

27% for lentils, 24% for pea, and 22% for chickpea (crude protein in % of dry matter according to 

www.feedipedia.org), and (ii) within crops with important effects of environmental conditions during 

crop growth, for example observed ranges of crude protein content are 35.3-43.8 % for soybean and 

25.2-33.5 % for fababean (www.feedipedia.org). Prediction of protein content and total protein 

production would require further research, and the modelling approach presented here might be of 

interest to this aim. 

5.3.2 Improved model evaluation and interpretation 

Assessing model transferability in time and space. Recent papers have highlighted the importance of 

rigorous cross-validation strategies to ensure that the predictive capacity of a given algorithm is 

evaluated on data as independent as possible from the data used to train that algorithm (Fourcade et 

al., 2018; Roberts et al., 2017). Following Guilpart et al. (2020) we will run two cross-validation 

strategies to assess transferability of our models in time and space. Transferability in time will be 

assessed by splitting the dataset into two periods in order to assess the ability of each algorithm to 

predict a period of time different from the one used for the training, while transferability in space will 

be assessed by ensuring a minimum spatial distance between training and test datasets as in (Guilpart 

et al., 2020). 

Toward interpretable machine learning models. Machine learning models are often considered as 

black-boxes because the reasons underlying their predictions are not easy to identify. However, recent 

advances in the so-called field of explainable Artificial Intelligence are providing some tools to 

overcome this difficulty. Three of them can be mentioned: (i) measures of variable importance over 

the whole training dataset (presented in Figure 13), (ii) partial-dependence plots that allows analysing 

the effect of one single variable on yield, (iii) estimation of variables contributions to an individual 

prediction. Partial-dependence plots are interesting because they allow to check whether a variable 

has an impact on yield that is consistent with the current knowledge of the crop’s physiology. For 

example, Guilpart et al. (2020) show that tmax in the first month of the growing season had a positive 

impact on soybean yield, especially above a threshold of 4°C that corresponds to the base temperature 

for germination. This kind of findings reinforces greatly the confidence in the model and therefore in 

its projections. We will look into partial-dependence plots for selected variables for all crops 

considered in this report to check whether their impact on yield is consistent with our current 

knowledge of their physiology. Then we will use recently developed methods to estimate  variables 

contributions to an individual prediction, such as the LIME method (Local Interpretable Model-agnostic 

Explanation) (Ryo et al., 2020) which is already implemented into the Lime R Package. This will allow 

to identify climatic drivers of yield projections at a specific location. We believe this will be helpful to 

(i) analyse consistency with crop physiology, (ii) discuss with local agronomists of the plausibility of 

model outputs. Organizing a workshop with LegValue partners who provided data to the European 

Grain Legume Dataset to discuss this kind of modelling outputs might be an interesting and valuable 

option. 

5.3.3 Yield projections under climate change 

Similarly to Guilpart et al. (2020), projections under climate change scenarios will be made using 16 

climate change scenarios consisting of bias-corrected data of eight Global Circulation Models (GCM; 

GFDL-ESM2M, HadGEM2-ES, IPSL-CM5A-LR, MIROC5, MIROC-ESM, MIROC-ESM-CHEM, MRI-CGCM3, 

and NorESM1-M) used in the Coupled Model Intercomparison phase 5 (CMIP5) (Taylor et al., 2012) 

http://www.feedipedia.org/
http://www.feedipedia.org/
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and two Representative Concentration Pathways (RCPs; 4.5 and 8.5 W m-2) (Van Vuuren et al., 2011). 

Details on the bias-correction method used is available in (Minamikawa et al., 2016). Although daily 

data are available in the bias-corrected GCMs outputs, we will compute and use monthly data in our 

analysis. We will consider three time periods for projections: 1981-2010 (historical), 2050-2059 (mid-

century), and 2090-2099 (end of the century). We will present the median predicted yield over the 

eight GCMs.  

5.4 Data accessibility 

European Grain Legume Dataset. As mentioned earlier, the European Grain Legume Dataset contains 

data from: (i) papers published in scientific journals, (ii) the Legato European research project, and (iii) 

non-published field experiments from LegValue partners. If data from (i) and (ii) are already publicly 

available, data from (iii) may be publicly available or not depending on the decision of the institution 

who owns the data. In line with open science principles, we will make publicly available as much data 

as possible. Therefore, a data paper will be published that will include a description of the public 

version of the European Grain Legume Dataset and the data will be hosted on a data repository (e.g. 

www.zenodo.org) accessible for download to anyone. The full EGLD (public and non-public version) 

will however be available only on request from LegValue partners to Daniele Antichi 

(daniele.antichi@unipi.it) for internal use only within the context of the LegValue project.  

Maps of yield projections under historical and future climate scenarios. The maps of yield projections 

generated for soybean, pea, faba bean, chickpea, and lentils under historical climate and future climate 

scenarios will be made available for download to anyone in geoTIFF or netCDF format. They will be 

posted on a data repository (e.g. www.zenodo.org) when the corresponding paper(s) will be published 

in appropriate scientific journals. They will also be available on request to Nicolas Guilpart 

(nicolas.guilpart@agropatistech.fr) before publication. 
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8 Appendix 

Table 5. List and description of variables included in the European Grain Legume Dataset. 

Variable name Variable description 

id Entry ID 

source Experiment/Paper 

publicly_available 
Y/N (YES if this data could be part of an open-access publication of the dataset 
on a Data Journal; N if for internal use in LegValue) 

experiment_ID Experiment acronym_Surname of responsible or FirstAuthorSurnameYEAR 

site_country Name of the country in full 

site_region NUTS 3. "NA" if not available 

site_name Name of the site in full. "NA" if not available 

lat Decimal degrees of Latitude (XX.xx). "NA" if not available 

lat_cardinal N/S. . "NA" if not available 

lon Decimal degrees of Longitude (XX.xx). "NA" if not available 

lon_cardinal W/E . "NA" if not available 

site_soil_classification_name Soil classification type (USDA). "NA" if not available 

site_soil_texture_name Soil texture class (e.g. loam, sandy, sandy loam). "NA" if not available 

soil_texture_anomaly Soil texture reported is not standard (Y/N) 

site_rain Total rainfall (mm) in the period considered. "NA" if not available 

site_rain_period annual/growing season. "NA" if not available 

site_rain_period_month 
Initial Final month of the period for which precipitations are reported (e.g. Jan 
Dec). "NA" if not available 

site_rain_period_year Years of registration of the precipitations (e.g. 1993). "NA" if not available 

site_temp Average temperature (°C) in the considered period. "NA" if not available 

site_temp_period annual/growing season. "NA" if not available 

site_temp_period_month 
Initial Final month of the period for which temperature is reported (e.g. Jan 
Dec). "NA" if not available 

site_temp_period_year Years of registration of the temperature (e.g. 1993). "NA" if not available 

organic_farming Y/N 

management_evaluated e.g. tillage, irrigation, variety 

treatment_name 
Report the name of the treatment or (in case of factorial combination) the 
name of the combination 

scientific_name 
Latin name (without author initials) of the legume crop species (e.g. Glycine 
max) 

previous_crop 
Latin name (without author initials) of the crop species grown before the 
legume (e.g. Triticum aestivum). "NA" if not available 
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crop Common name of the legume crop species (e.g. Soybean) 

crop_type 
Field pea: "green" or "dry". Faba bean: "horse" for var. equina, "pigeon" for var. 
minor, "broad" for var. major 

cultivar Name of the legume crop variety. "NA" if not available 

precocity_group Only for soybean. Report here the precocity group (000 to 10) 

gm Genetically modified variety? Y/N 

sow_dd 
Day of sowing as originally reported in the source document. If more than one, 
the range is reported. "NA" if not available 

sow_mm 
Month of sowing as originally reported in the source document. If more than 
one, the range is reported. "NA" if not available 

sow_yy 
Year of sowing as originally reported in the source document. If more than one, 
the range is reported. "NA" if not available 

sow_date mm/dd/yyyy. "NA" if not available 

har_dd 
Day of harvest as originally reported in the source document. If more than one, 
the range is reported. "NA" if not available 

har_mm 
Month of harvest as originally reported in the source document. If more than 
one, the range is reported. "NA" if not available 

har_yy 
Year of harvest as originally reported in the source document. If more than one, 
the range is reported. "NA" if not available 

har_date mm/dd/yyyy. "NA" if not available 

cycle_length 
Length of crop cycle in the experimental year (nr. of days from sowing to 
harvest). "NA" if not available 

tillage 
"Y" if a tillage operation is performed before legume sowing, or "N" if sod-
seeding legume 

plant_density nr of legume plants per m2 (alternative to sowing density). "NA" if not available 

sowing_density nr of legume seeds per m2 (alternative to plant density). "NA" if not available 

row_spacing inter-row space in meters.  "NA" if not available 

N_rate Total amount of N (kg ha-1) supplied to the crop 

N_fertiliser type_1 
Name(s) of the first N fertiliser applied to the crop with its level of N application 
rate (kg N ha-1) (e.g. Poultry manure -30-). "NR" if not relevant (if fertilisation is 
not applied) 

N_fertiliser type_2 
Name(s) of the second N fertiliser applied to the crop with its level of N 
application rate (kg N ha-1) (e.g. Poultry manure -30-). "NR" if not relevant (if 
fertilisation is not applied) 

N_fertiliser type_3 
Name(s) of the third N fertiliser applied to the crop with its level of N 
application rate (kg N ha-1) (e.g. Poultry manure -30-). "NR" if not relevant (if 
fertilisation is not applied) 

N_nb_application 
Nr. of applications of N fertilisers. "NR" if not relevant (if fertilisation is not 
applied) 

N_perc_from_organic_fert 
% of total N supplied to the crop coming from organic fertilisers or 
amendments. "NR" if not relevant (if fertilisation is not applied) 

P_rate Total amount of P (kg ha-1) supplied to the crop 

P_fertiliser_type_1 
Name(s) of the first P fertiliser applied to the crop with its level of P application 
rate (kg P ha-1) (e.g. Poultry manure -30-). "NR" if not relevant (if fertilisation is 
not applied) 

P_fertiliser_type_2 
Name(s) of the second P fertiliser applied to the crop with its level of P 
application rate (kg P ha-1) (e.g. Poultry manure -30-). "NR" if not relevant (if 
fertilisation is not applied) 
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P_nb_application 
Nr. of applications of P fertilisers. "NR" if not relevant (if fertilisation is not 
applied) 

P_perc_from_organic_fert 
% of total P supplied to the crop coming from organic fertilisers or 
amendments. "NR" if not relevant (if fertilisation is not applied) 

K_rate Total amount of K (kg ha-1) supplied to the crop 

K_fertiliser_type_1 
Name(s) of the first K fertiliser applied to the crop with its level of K application 
rate (kg K ha-1) (e.g. Poultry manure -30-). "NR" if not relevant (if fertilisation is 
not applied) 

K_fertiliser_type_2 
Name(s) of the second K fertiliser applied to the crop with its level of K 
application rate (kg K ha-1) (e.g. Poultry manure -30-). "NR" if not relevant (if 
fertilisation is not applied) 

K_nb_application 
Nr. of applications of K fertilisers. "NR" if not relevant (if fertilisation is not 
applied) 

K_perc_from_organic_fert 
% of total K supplied to the crop coming from organic fertilisers or 
amendments. "NR" if not relevant (if fertilisation is not applied) 

irrigation 
Y/N_partial/full (Y if irrigation was applied or N if not; PARTIAL if irrigation did 
not cover the full water need of the crop or FULL if it did) 

irrigation_quantity 
Mean amount of irrigation water (mm) applied (exact amount or MIN-MAX 
value if a range is reported). "NA" if not available. "NR" if not relevant (if 
irrigation is not applied) 

herbicide_application Were chemical herbicides applied or not (Y/N) 

mechanical_weed_control Was mechanical weeding applied or not (Y/N) 

crop_protection 
Were crop protection products, including natural or biocontrol agents, applied 
to the crop (Y/N) 

replicate_nb 
Number of replicates concurring to the mean yield value reported in a single 
site x year combination (e.g. number of blocks or spatial replicates) 

site_nb 
Number of different sites considered as spatial replicates for computing the 
mean yield value reported, if mean yield values for each site are not available 

year_nb 
Number of years concurring to the mean yield value reported, if single year 
mean yield values are not available 

moisture_at_harvest 
Moisture percentage of the marketable yield (e.g. "13" for 13%) as reported in 
the source material 

yield 
Yield of the grain of the legume crop in t d.m. ha-1 (the humidity reported in the 
previous column, when available, is removed from the grain yield reported) 

yield_se 
Value of the standard error of the mean of the yield, if available. If not 
available, "NA" 

yield_sd 
Value of the standard deviation of the mean of the yield, if available. If not 
available, "NA" 

yield_cv 
Value of the coefficient of variation of the mean of the yield, if available. If not 
available, "NA" 

yield_var Value of the variance of the mean of the yield, if available. If not available, "NA" 

 

  



  

This project has received funding from the European Union’s Horizon 2020 research and innovation 
programme under grant agreement N°727672 

27 

Table 6. Pulses actual yield by country. Data are in t ha-1 and represent average yield over the 2010-2019 time 
period. Source: FAOSTAT. 

Country Broad beans Chickpeas Lentils Peas, dry Soybeans 

Albania 1.3 - - - 2 

Armenia - - 1.8 2.3 - 

Austria 2.4 - - 2.4 2.7 

Belarus - - - 2.6 - 

Belgium 4.4 - - 4.1 - 

Bosnia and Herzegovina - 3.1 - 2.3 2 

Bulgaria 2.8 1.3 1.2 2.1 1.7 

Croatia 1.2 - 2 2.4 2.6 

Czech Republic 1.3 - - 2.6 2.1 

Denmark 3.2 - - 3.8 - 

Estonia 1.8 - - 1.9 - 

Finland 1.7 - - 2.4 - 

France 3.2 - 1.5 3.7 2.7 

Georgia - - - 1 3 

Germany 3.6 - - 3.2 2.3 

Greece 2.1 1.4 1.2 3.9 3 

Hungary 1.5 1.5 1 2.4 2.4 

Ireland 3.8 - - 4.1 - 

Italy 1.9 1.5 0.8 2.6 3.5 

Latvia 2.5 - - 2.5 - 

Lithuania 1.8 - - 2.3 1.5 

Luxembourg 2.3 - - 2.9 - 

Moldova - 3.7 - 1.7 1.5 

Montenegro - - - 2.8 - 

Netherlands 5 - - 4.9 - 

Norway - - - 1.5 - 

Poland 2.4 - - 2.4 1.8 

Portugal 8.4 0.7 - - - 

Republic of Macedonia - 1.3 1.1 2 1.7 

Romania 1.3 1.2 - 1.9 2.3 

Russia 1.4 0.9 0.9 1.8 1.4 

Serbia - - - - 2.8 

Slovakia 1.6 0.7 0.8 2.3 2.1 

Slovenia 3.4 - - 2.4 2.6 

Spain 1.4 0.9 0.7 1.3 2.9 

Sweden 3.1 - - 3 - 

Switzerland 2.9 - - 3.5 2.7 

Turkey 2.6 1.2 1.6 2.7 4.1 

Ukraine 2.1 - 1.2 2.1 2.1 

United Kingdom 3.6 - - 3.6 - 

Europe (all countries) 2.9 1.0 0.9 2.1 1.9 
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Figure 7. Frequency of sowing and harvesting months based on the latitude of the experimentations for each 
pulse. Each point represents experimentations with the same sowing or harvesting months. The size of the point 
increase with the number of experimentations sown or harvested on the same month. The green points are the 
sowing months and the blue points, the harvesting months. The experiments are conducted between a latitude 
from 36.73 to 62.94.  
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Figure 8. Assessment of the Random Forest algorithm for the different crops considered in this study. For each crop, the model is evaluated using a classical bootstrap 
approach with 25 resamplings, and out-of-bag predictions are compared to observed yields. Black lines represent the linear regression between observed and predicted 
yields. Linear regression outputs are shown on the bottom right in each panel. The 95% prediction interval is shown in grey. Dotted lines represent the 1:1 line. Histograms 
of model residuals are shown as insets. Yield values are expressed at a standard moisture content of 13%.   
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Figure 9. Analysis of model residuals: residuals as a function of latitude.
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Figure 10. Analysis of model residuals: residuals as a function of average in-season tmax.
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Figure 11. Analysis of model residuals: residuals as a function of total in-season rainfall.
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Figure 12. Analysis of model residuals: residuals as a function of observed yields.
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Figure 13. Variables importance plots derived from the Random Forest algorithm. tmin (°C) is the monthly average of daily minimum temperature, tmax (°C) is the monthly 
average of daily maximum temperature, rain (mm day-1) is the monthly average of daily rainfall, solar (W m-2) is the monthly average of daily downward shortwave radiation, 
etRf is the monthly average of daily reference evapotranspiration (mm day-1). The number indicated as a suffix indicates the month of the growing season, so that tmin_2 is 
the average daily minimum temperature in the 2nd month of the growing season.
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Figure 14. Comparison of climatic variables distribution as observed in the training dataset and over Europe for 
soybean. For Europe, the distribution concerns climate data from 2000-2020. 
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Figure 15. Comparison of climatic variables distribution as observed in the training dataset and over Europe for 
spring pea. For Europe, the distribution concerns climate data from 2000-2020. 
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Figure 16. Comparison of climatic variables distribution as observed in the training dataset and over Europe for 
spring fababean. For Europe, the distribution concerns climate data from 2000-2020. 
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Figure 17. Comparison of climatic variables distribution as observed in the training dataset and over Europe for 
spring chickpea. For Europe, the distribution concerns climate data from 2000-2020.  
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Figure 18.Comparison of climatic variables distribution as observed in the training dataset and over Europe for 
spring lentil. For Europe, the distribution concerns climate data from 2000-2020. 
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Figure 19. Frequency of climate events in-range of climate conditions observed in training dataset for spring crops. See Materials and methods section 4.2.3 for details. 
Pixels where the frequency is low denote areas where climatic conditions are different from climatic in the training dataset. Frequency was calculated on the 2000-2020 time 
period, taking into account crop-specific growing seasons.  
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Figure 20. Frequency of climate events in-range of climate conditions observed in training dataset for winter crops. See Materials and methods section 4.2.3 for details. 
Pixels where the frequency is low denote areas where climatic conditions are different from climatic in the training dataset. Frequency was calculated on the 2000-2020 time 
period, taking into account crop-specific growing seasons 
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Figure 21. (A) Soybean projected yields (t ha-1 at 13% moisture) under historical climate (average 2000-2020) and (B) maps of locations of experiments used for model 
fitting (yellow dots) and climate zones containing at least one experiment (filled polygons). Projections are shown only on agricultural area (cropland plus pastures) in the 
year 2000 and where climate conditions are reasonably similar to climate conditions in training dataset (see text for details). Climate zones are the Global Yield Gap Atlas 
Extrapolation Domain (GYGA-ED) available at www.yieldgap.org . 

 

http://www.yieldgap.org/
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Figure 22. (A) Spring faba bean projected yields (t ha-1 at 13% moisture) under historical climate (average 2000-2020) and (B) maps of locations of experiments used for 
model fitting (yellow dots) and climate zones containing at least one experiment (filled polygons). Projections are shown only on agricultural area (cropland plus pastures) 
in the year 2000 and where climate conditions are reasonably similar to climate conditions in training dataset (see text for details). Climate zones are the Global Yield Gap 
Atlas Extrapolation Domain (GYGA-ED) available at www.yieldgap.org . 
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Figure 23. Winter faba bean projected yields (t ha-1 at 13% moisture) under historical climate (2000-2020) and maps of locations of experiments used for model fitting 
(yellow dots) and climate zones containing at least one experiment (filled polygons). The first map shows the median projected yield over years. Projections are shown only 
on agricultural area (cropland plus pastures) in the year 2000. Climate zones are the Global Yield Gap Atlas Extrapolation Domain (GYGA-ED) available at www.yieldgap.org . 
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Figure 24. (A) Spring field pea projected yields (t ha-1 at 13% moisture) under historical climate (average 2000-2020) and (B) maps of locations of experiments used for 
model fitting (yellow dots) and climate zones containing at least one experiment (filled polygons). Projections are shown only on agricultural area (cropland plus pastures) 
in the year 2000 and where climate conditions are reasonably similar to climate conditions in training dataset (see text for details). Climate zones are the Global Yield Gap 
Atlas Extrapolation Domain (GYGA-ED) available at www.yieldgap.org . 
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Figure 25. (A) Winter field pea projected yields (t ha-1 at 13% moisture) under historical climate (average 2000-2020) and (B) maps of locations of experiments used for 
model fitting (yellow dots) and climate zones containing at least one experiment (filled polygons). Projections are shown only on agricultural area (cropland plus pastures) 
in the year 2000 and where climate conditions are reasonably similar to climate conditions in training dataset (see text for details). Climate zones are the Global Yield Gap 
Atlas Extrapolation Domain (GYGA-ED) available at www.yieldgap.org . 
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Figure 26. (A) Spring lentil projected yields (t ha-1 at 13% moisture) under historical climate (average 2000-2020) and (B) maps of locations of experiments used for model 
fitting (yellow dots) and climate zones containing at least one experiment (filled polygons). Projections are shown only on agricultural area (cropland plus pastures) in the 
year 2000 and where climate conditions are reasonably similar to climate conditions in training dataset (see text for details). Climate zones are the Global Yield Gap Atlas 
Extrapolation Domain (GYGA-ED) available at www.yieldgap.org  

.  

http://www.yieldgap.org/
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Figure 27. (A) Winter lentil projected yields (t ha-1 at 13% moisture) under historical climate (average 2000-2020) and (B) maps of locations of experiments used for model 
fitting (yellow dots) and climate zones containing at least one experiment (filled polygons). Projections are shown only on agricultural area (cropland plus pastures) in the 
year 2000 and where climate conditions are reasonably similar to climate conditions in training dataset (see text for details). Climate zones are the Global Yield Gap Atlas 
Extrapolation Domain (GYGA-ED) available at www.yieldgap.org  
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Figure 28. (A) Spring chickpea projected yields (t ha-1 at 13% moisture) under historical climate (average 2000-2020) and (B) maps of locations of experiments used for 
model fitting (yellow dots) and climate zones containing at least one experiment (filled polygons). Projections are shown only on agricultural area (cropland plus pastures) 
in the year 2000 and where climate conditions are reasonably similar to climate conditions in training dataset (see text for details). Climate zones are the Global Yield Gap 
Atlas Extrapolation Domain (GYGA-ED) available at www.yieldgap.org  
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Figure 29. (A) Winter chickpea projected yields (t ha-1 at 13% moisture) under historical climate (average 2000-2020) and (B) maps of locations of experiments used for 
model fitting (yellow dots) and climate zones containing at least one experiment (filled polygons). Projections are shown only on agricultural area (cropland plus pastures) 
in the year 2000 and where climate conditions are reasonably similar to climate conditions in training dataset (see text for details). Climate zones are the Global Yield Gap 
Atlas Extrapolation Domain (GYGA-ED) available at www.yieldgap.org  
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